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1 Introduction

Parton Distribution Functions (PDFs) describe the longitudinal-momentum structure of

the nucleon in the interpretation of inclusive and semi-inclusive Deep-Inelastic Scattering

(DIS). Analogously, Generalized Parton Distributions (GPDs) [1–3] describe the multidi-

mensional structure of the nucleon in the interpretation of hard exclusive leptoproduction,

most simply when the target is left intact. PDFs and elastic nucleon Form Factors (FFs)

are embodied in GPDs as their limiting cases and moments, respectively [2]. While FFs

and PDFs represent one-dimensional distributions, GPDs provide correlated information

on transverse spatial and longitudinal momentum distributions of partons [4–6]. In ad-

dition, the total angular momentum carried by partons in the nucleon can be calculated

from GPDs [2].

GPDs depend on the four kinematic variables x, ξ, Q2, and the squared four-

momentum transfer t to the target. In a frame where the nucleon moves with ‘infinite’

momentum, x and 2ξ are the average and difference of the longitudinal momentum frac-

tions of the parton in the initial and final state, as illustrated in figure 1(a). In hard

exclusive leptoproduction, x has no direct relationship with the experimental kinematic

observable xB ≡ Q2/(2P · q). Here, P is the four momentum of the target nucleon, q is the

difference between the four momenta of the incident and scattered lepton, and Q2 ≡ −q2.

The skewness parameter ξ is related to xB, as ξ ≈ xB/(2 − xB) in leading order Quan-

tum Electrodynamics (QED) and in the kinematic limit of large Q2 with xB and t fixed

(generalized Bjorken limit). In addition, like PDFs, GPDs are subject to Quantum Chro-

modynamics (QCD) evolution with Q2, which has been calculated perturbatively to leading

order [1–3, 7] and next-to-leading order [8–10] in the strong coupling constant αs.
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Figure 1. Leading order diagrams for deeply virtual Compton scattering (a) and Bethe-Heitler (b)

processes.

Deeply Virtual Compton Scattering (DVCS), the hard exclusive leptoproduction of real

photons, e.g., e± p → e± p γ, has the simplest theoretical interpretation in terms of GPDs

among the presently experimentally feasible hard exclusive reactions. DVCS amplitudes

can be measured through the interference between the DVCS and Bethe-Heitler (BH)

processes, in which the photon is radiated from a parton in the former and from the lepton

in the latter (see figure 1). These processes have an identical final state. Hence their

amplitudes τDVCS and τBH add coherently, resulting in an interference term ‘ I ’ in the cross

section for exclusive leptoproduction of real photons. For an unpolarized proton target,

the cross section can be written as [11, 12]

dσ

dxB dQ2 d|t|dφ
=

xB e6

32 (2π)4 Q4
√

1 + ǫ2


|τBH|2 + |τDVCS|2 +

I︷ ︸︸ ︷
τDVCS τ∗BH + τ∗DVCS τBH


 ,

(1.1)

where e represents the elementary charge and ǫ ≡ 2xBMp/Q, with Mp the proton mass.

The azimuthal angle φ is defined as the angle between the lepton scattering plane and the

photon production plane spanned by the trajectories of the virtual and real photons.

The three contributions entering the photon production cross section can be expanded

in Fourier series in φ. For an unpolarized proton target, they can be written as [12]

|τBH|2 =
KBH

P1(φ)P2(φ)

{
2∑

n=0

cBH
n cos(nφ)

}
, with KBH =

1

x2
B t (1 + ǫ2)2

, (1.2)

|τDVCS|2 =
1

Q2

{
2∑

n=0

cDVCS
n cos(nφ) + λ sDVCS

1 sinφ

}
, (1.3)

I =
−eℓ KI

P1(φ)P2(φ)

{
3∑

n=0

cI
n cos(nφ) +

2∑

n=1

λ sI
n sin(nφ)

}
, with KI =

1

xB y t
. (1.4)

Here, y is the fraction of the incident lepton energy carried by the virtual photon in the

target rest frame, and λ and eℓ represent respectively the beam helicity and beam charge in
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units of the elementary charge. The Fourier coefficients cBH
n and lepton propagators P1(φ),

P2(φ) of the BH term can be calculated within the framework of QED from the kinematic

variables and the Dirac and Pauli form factors F1 and F2 of the nucleon.

The Fourier coefficients of the interference term (eq. (1.4)) are of greatest interest

since they ultimately depend on a linear combination of GPDs, while the coefficients of the

squared DVCS term (eq. (1.3)) are bilinear in GPDs. The coefficients

sI
1 = 8k λ y(2 − y) ImM1,1, (1.5)

cI
1 = 8k(2 − 2y + y2) ReM1,1, (1.6)

are respectively proportional to the imaginary and real parts of M1,1, the leading-twist

(twist-2) photon-helicity-conserving amplitude of the DVCS process. Here, Mµ,µ′
denotes

the helicity amplitude with virtual (real) photon helicity µ (µ′), following the notation of

ref. [11]. The kinematic factor k ∝ √−t/Q originates from the BH propagators. Note

that the sign in eq. (1.6) differs from that in ref. [12] due to the different definition of the

azimuthal angle: φ = π − φ[12]. The amplitude M1,1 is given by a linear combination of

the Compton Form Factors (CFFs) H, H̃ and E :

M1,1 = F1(t)H(ξ, t,Q2) +
xB

2 − xB

(
F1(t) + F2(t)

)
H̃(ξ, t,Q2)− t

4M2
p

F2(t) E(ξ, t,Q2). (1.7)

The CFFs are convolutions of the respective twist-2 GPDs H, H̃ or E, with perturbatively

calculable hard-scattering amplitudes. These amplitudes have been calculated to next-to-

leading order in αs [13–15]. The contributions from the CFFs H̃ and E to the amplitude

M1,1 are kinematically suppressed compared to that from the CFF H at small values of

xB and t, respectively.

In addition to sI
1 and cI

1, the only other Fourier coefficients related to quark-helicity-

conserving twist-2 GPDs are cI
0 and cDVCS

0 . The coefficient cI
0 is also related to M1,1.

Considering only the dominant CFF H, cI
0 is directly proportional to cI

1 via the factor k

defined above:

cI
0 ∝ −k cI

1. (1.8)

The coefficients sI
2, cI

2, sDVCS
1 and cDVCS

1 are related to twist-3 GPDs. The coefficient sI
2

(cI
2) is proportional to the imaginary (real) part of the helicity non-conserving amplitudes

M0,±1, corresponding to the virtual photon being longitudinal. Conservation of angular

momentum is ensured by either the exchange of an additional gluon (genuine or dynamic

twist-3) or by the fact that quarks can carry non-zero orbital angular momentum along the

collision axis (kinematically suppressed by the same order in 1/Q), which is possible due

to the transverse momentum involved. The part of the twist-3 GPD associated with the

latter picture can be related to the twist-2 quark GPDs using the Wandzura-Wilczek (WW)

approximation [16] and thus is also known as the WW part of the twist-3 contribution [17].

The Fourier coefficient cI
3 is proportional to the real part of the amplitudes M1,−1 and

M−1,1, which do not conserve photon helicity, i.e., both photons are transverse and they

have opposite helicity. The induced two units of angular momentum can be accommodated
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by gluon helicity-flip. Gluon helicity-flip GPDs do not mix with quark GPDs via Q2

evolution and thus probe the gluonic properties of the nucleon [10]. They appear at leading

twist, but are suppressed by a factor αs/π. In addition, as in the case of the coefficients

discussed above that are kinematically suppressed by 1/Q, it is possible that the two

participating quarks complete the conservation of angular momentum if they carry orbital

angular momentum. As they have to account for two units of angular momentum instead

of one as above, this process appears at twist-4. The associated twist-4 GPD was found to

be calculable in terms of twist-2 quark GPDs using the WW approximation [18]. Similarly,

the Fourier coefficient cDVCS
2 arises from the twist-2 gluon helicity-flip GPDs with possible

contributions from twist-4 quark GPDs.

2 Asymmetries

Previous measurements with a longitudinally (L) polarized positron {electron} beam by

HERMES [19] {CLAS [20–22]} on an unpolarized (U) proton target provided access to a

combination of sI
1 and sDVCS

1 via the single-charge beam-helicity asymmetry, also denoted

as the Beam-Spin Asymmetry (BSA):

ALU(φ, eℓ) ≡
dσ→ − dσ←

dσ→ + dσ←

=

−eℓ
KI

P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]
+ 1

Q2 sDVCS
1 sin φ

1
P1(φ)P2(φ)

[
KBH

2∑

n=0

cBH
n cos(nφ) − eℓKI

3∑

n=0

cI
n cos(nφ)

]
+ 1

Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.1)

Here, σ→ (σ←) denotes the cross section for a beam with positive (negative) helicity. Pre-

dominant sin φ dependences with opposite sign have been observed at the two experiments,

indicating the dominance of the interference term involving eℓ · sI
1. However, quantitative

access to sI
1 is complicated by the presence of sDVCS

1 , which is a higher twist-contribution

but possibly significant, and by the presence of cI
1 and cI

0, i.e., the other Fourier coefficients

of interest appearing at leading twist (see eqs. (1.6) and (1.8)).

This entanglement can be avoided by defining the charge-difference beam-helicity

asymmetry [23]:

AI
LU(φ) ≡ (dσ+→ − dσ+←) − (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=

− KI
P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

, (2.2)

where the additional +(−) superscript on the cross-sections denotes the charge of the lepton

beam. This asymmetry has the important advantages that the sin φ dependence in the
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numerator stems solely from the interference term, as the (higher-twist) sin φ dependence

of the squared DVCS term cancels, and the denominator no longer contains the leading

terms cI
1 and cI

0. Therefore it gives direct access to linear combinations of GPDs, while

another charge-averaged asymmetry related to the squared DVCS term provides access to

bilinear combinations of GPDs:

ADVCS
LU (φ) ≡ (dσ+→ − dσ+←) + (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=

1
Q2 sDVCS

1 sin φ

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.3)

The previously extracted [24, 25] Beam-Charge Asymmetry (BCA)

AC(φ) ≡ dσ+ − dσ−

dσ+ + dσ−
=

− KI
P1(φ)P2(φ)

3∑

n=0

cI
n cos(nφ)

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

(2.4)

provides access to the real part of the DVCS amplitude via cI
n.

3 Event selection

The data were collected during the years 1996–2005 with the HERMES spectrometer [26]

using the longitudinally polarized 27.6 GeV electron and positron beams provided by the

HERA accelerator facility at DESY. The hydrogen gas target was either unpolarized, lon-

gitudinally or transversely nuclear-polarized. However, the time averaged polarization of

the polarized targets was negligible, while the rapid (60−180 s) reversal of the polarization

direction minimized polarization bias due to detector effects. The polarization direction

of the beam was reversed about every two months. The integrated luminosity for the

electron (positron) data sample corresponds to about 106 pb−1(292 pb−1) with an average

magnitude of the beam polarization of 30.0% (49.4%). The latter has a mean fractional

systematic uncertainty of 2.8%.

A brief description of the event selection is given here. More details can be found in

refs. [24, 27]. Events are selected with exactly one photon producing an energy deposition

larger than 5 GeV (1 MeV) in the calorimeter (preshower detector) and one charged track,

identified as the scattered lepton, in the kinematic range 1 GeV2 < Q2 < 10 GeV2, 0.03 <

xB < 0.35, W > 3GeV and ν < 22 GeV. Here, W denotes the invariant mass of the initial

photon-nucleon system and ν denotes the virtual-photon energy in the target rest frame.

The angle θγ∗γ between the real and the virtual photon is constrained to be between 5 and

45 mrad. The recoiling proton is not detected. An ‘exclusive’ sample of events is selected

by the requirement that the squared missing mass M2
X of the reaction e± p → e± γ X

corresponds to the squared proton mass. The resolution in M2
X is limited by the energy

– 5 –
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resolution of the real photon in the calorimeter. Correspondingly, the exclusive region

is defined as −(1.5 GeV)2 < M2
X < (1.7 GeV)2, as determined from signal-to-background

studies using a Monte Carlo (MC) simulation. For elastic events (leaving the proton intact),

the kinematic relationship between the energy and direction of the real photon permits t to

be calculated without using the measured energy of the real photon, which is the quantity

subject to the largest uncertainty. Thus, the value of t is calculated as

t =
−Q2 − 2 ν (ν −

√
ν2 + Q2 cos θγ∗γ)

1 + 1
Mp

(ν −
√

ν2 + Q2 cos θγ∗γ)
(3.1)

for the exclusive event sample. The quantity −t is required to be smaller than 0.7 GeV2.

The error caused by applying this expression to inelastic events is accounted for in the MC

simulation that is used to calculate the fractional contribution of background processes per

kinematic bin in xB, Q2, and −t.

4 Extraction of asymmetry amplitudes

The experimental yield N can be parameterized as

N (eℓ, Pℓ, φ) = L (eℓ, Pℓ)η(eℓ, φ)σUU(φ) ×
[
1 + PℓADVCS

LU (φ) + eℓPℓAI
LU(φ) + eℓAC(φ)

]
.

(4.1)

Here, L is the integrated luminosity, η the detection efficiency, Pℓ the beam polarization

and σUU the cross section for an unpolarized target averaged over both beam charges and

helicities. The asymmetries AI
LU(φ), ADVCS

LU (φ), and AC(φ) relate to the Fourier coefficients

in eqs. (1.2)–(1.4) according to eqs. (2.2)–(2.4). They are expanded in φ as

AI
LU(φ) ≃

2∑

n=1

A
sin(nφ)
LU,I sin(nφ) +

1∑

n=0

A
cos(nφ)
LU,I cos(nφ), (4.2)

ADVCS
LU (φ) ≃

2∑

n=1

A
sin(nφ)
LU,DVCS sin(nφ) +

1∑

n=0

A
cos(nφ)
LU,DVCS cos(nφ), (4.3)

AC(φ) ≃
3∑

n=0

A
cos(nφ)
C cos(nφ) +Asinφ

C sinφ, (4.4)

where the approximation is due to the truncation of the in general infinite Fourier se-

ries caused by the azimuthal dependences in the denominators of eqs. (2.2)–(2.4). The

asymmetry amplitudes Asinφ
LU,I, Acos φ

C and A
cos(0φ)
C relate to the twist-2 Fourier coefficients

of the interference term appearing in eq. (1.4) and further developed in eqs. (1.5), (1.6)

and (1.8), respectively. The asymmetry amplitudes Asin φ
LU,DVCS, A

sin(2φ)
LU,I , A

cos(2φ)
C and A

cos(3φ)
C

are related to other Fourier coefficients in eqs. (1.3) and (1.4), which are also explained

above. The remaining asymmetry amplitudes are expected to be zero but were introduced

to test for instrumentally induced harmonics. (The asymmetry amplitude A
sin(2φ)
LU,DVCS can,

in addition, arise through the interplay of numerator and denominator in eq. (2.3) if the

twist-3 Fourier coefficient sDVCS
1 has a sizeable value.) Comparison of predictions based

– 6 –
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on GPD models to data for either asymmetry amplitudes or the Fourier coefficients in

eqs. (1.3) and (1.4) provides similar information, as the asymmetry amplitudes relate to

the corresponding Fourier coefficients in an approximately model-independent way. This is

due to the fact that the BH coefficients cBH
n and lepton propagators are precisely calculable,

and that in the kinematic region of HERMES the contributions from the squared DVCS

term in the denominators of eqs. (2.2)–(2.4) are expected to be much smaller than the BH

contributions [28].

The extraction of the asymmetry amplitudes in each kinematic bin of xB , Q2 and t is

based on the maximum likelihood technique [29], providing a bin-free fit in φ to the data.

Its application here is explained in detail in ref. [25]. In the fit, weights were introduced to

account for luminosity imbalances with respect to beam charge and polarization. No bal-

ancing procedure was required for the target polarization, as the time averaged polarization

was negligible as mentioned above.

5 Background corrections and systematic uncertainties

Each extracted asymmetry amplitude A is corrected, in each kinematic bin, for the contri-

bution of semi-inclusive and exclusive background, which is mostly due to the production

of π0 and η mesons. The background-corrected amplitude is calculated as

Acorr =
A − fsemiAsemi − fexclAexcl

1 − fsemi − fexcl
. (5.1)

The fraction fsemi of semi-inclusive background per bin is calculated using a MC simulation

described in detail in ref. [25]. It varies between 0.6% and 12.7% depending on the kinematic

bin, with an average value of 3.3%. Based on the model in ref. [30], the fraction fexcl of

exclusive background is estimated in each kinematic bin and found to be below 0.7%

everywhere. A direct search for exclusive neutral pions in the HERMES data supports this

estimate [31]. The semi-inclusive (exclusive) background can have a non-zero asymmetry

Asemi (Aexcl), as has been measured for, e.g., the semi-inclusive production of π0 mesons,

which exhibits a sinusoidal φ dependence on the beam helicity [32]. The beam-charge-

dependent background asymmetry is zero at leading order QED. Hence the contributions

from semi-inclusive and exclusive background constitute a dilution of AC and effectively

also of AI
LU, as the latter involves only charge differences. In order to correct ADVCS

LU for the

semi-inclusive background, the size of the beam-helicity asymmetry for this background is

extracted from data by reconstructing neutral pions with a large fractional energy Eπ0/ν >

0.8 (see ref. [25] for details). For the exclusive background, the asymmetry cannot be

extracted from data due to the small yield of exclusive pions. As the asymmetry is in

the range [-1,1], a value of zero is assumed with a “statistical” uncertainty of 2/
√

12, i.e.,

one standard deviation for a uniform distribution. The statistical uncertainty on the total

correction due to the statistical uncertainties in the background fractions and asymmetries

is propagated as a contribution to the final statistical uncertainty. In addition, half the size

of the actual correction is assigned as systematic uncertainty to account for assumptions

and approximations inherent in the approach.
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Amplitude A± δ(stat.)± δ(syst.) Missing mass shift Background corr. Alignment, acceptance, bin width

A
sin φ
LU,I −0.224± 0.028± 0.020 0.001 0.005 0.019

A
sin φ
LU,DVCS 0.043± 0.028± 0.004 0.000 0.004 0.000

A
cos(0φ)
C −0.020± 0.006± 0.008 0.004 0.000 0.007

A
cos φ
C 0.055± 0.009± 0.004 0.001 0.001 0.003

Table 1. Overall values of the asymmetry amplitudes of greatest interest, at average kinematics

〈−t〉 = 0.12GeV2, 〈xB〉 = 0.10, and 〈Q2〉 = 2.46GeV2. The rightmost three columns present

dominant contributions to the systematic uncertainties. Not included is a 2.8% scale uncertainty

of the beam-helicity asymmetries due to the beam polarization measurement.

The dominant systematic uncertainty for the amplitude Asinφ
LU,DVCS is due to the back-

ground correction. In the case of A
sin(nφ)
LU,I and A

cos(nφ)
C , the systematic uncertainty is pre-

dominantly due to the combined contributions of possible deviations of the detector and/or

the beam from their nominal positions (‘alignment’), detector acceptance including smear-

ing, and finite bin width in xB, t and Q2. The systematic uncertainty arising from these

combined contributions is estimated by MC simulations using the GPD model described

in ref. [33]. Note that a mistake has been found in this GPD model [34]. However, the

model of ref. [33] described HERMES beam-charge [25] and preliminary (single charge)

beam-helicity asymmetries [35] and thus is considered adequate for systematic studies. In

each bin, the systematic uncertainty is taken as the difference between the model predic-

tions at the mean kinematic value of that bin and the respective amplitude extracted from

the reconstructed MC data.

Further systematic uncertainties arise from an observed relative shift of the squared

missing-mass spectra between the electron and positron sample, with a magnitude of ap-

proximately 0.2 GeV2 [36]. The boundaries defining the exclusive sample in the missing

mass spectra were adjusted to account for this shift. One quarter of the effect on the

extracted asymmetries is applied as systematic uncertainty. The impact of both trigger

and tracking inefficiencies was studied and found to be negligible. Also not included is any

contribution due to additional QED vertices, as the most significant of these has been esti-

mated to be negligible in the case of helicity asymmetries [37]. The systematic uncertainties

are added in quadrature and given in table 1.

6 Results

Table 1 presents the asymmetry amplitudes of greatest interest extracted in the entire

HERMES kinematic acceptance (“overall” results). The sin φ amplitude of the beam-

helicity asymmetry sensitive to the interference term is shown in the first row of figure 2.

It exhibits a large overall value of Asinφ
LU,I = −0.224 ± 0.028(stat.) ± 0.020(sys.), with no

significant dependence on any of the kinematic variables −t, xB, and Q2. This implies a

rather strong dependence of this amplitude on t for smaller values of −t, as the asymmetry

amplitude has to vanish in the limit of vanishing −t due to the vanishing factor k in eq. (1.5).

(In the limit of vanishing t, cBH
0 remains finite and the dependences of KBH, KI, P1(φ)

and P2(φ) on t cancel in eq. (2.2).) The sin φ amplitude of the beam-helicity asymmetry
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Figure 2. The first (second) row shows the sin φ amplitude of the beam-helicity asymmetry ALU,I

(ALU,DVCS), which is sensitive to the interference term (squared DVCS term), extracted from the

1996–2005 hydrogen data in the entire experimental acceptance, and as a function of −t, xB, and Q2.

The third row shows the sin 2φ amplitude of ALU,I. The error bars (bands) represent the statistical

(systematic) uncertainties. Not included is a 2.8% scale uncertainty due to the beam polarization

measurement. The calculations are based on the recently corrected minimal implementation [33, 34]

of a dual-parameterization GPD model (Dual-GT) and on a GPD model [30, 38] based on double-

distributions (VGG). Both models use a Regge-motivated t-dependence. The band for the VGG

model results from varying the parameters bval and bsea between unity and infinity. The bottom row

shows the fractional contribution of associated BH production as obtained from a MC simulation.

sensitive to the squared DVCS term is shown in the second row of figure 2. It also shows

no kinematic dependence, with an overall value of Asinφ
LU,DVCS = 0.043 ± 0.028(stat.) ±

0.004(sys.). As explained above (see eq. (2.1)), the beam-helicity asymmetries measured

previously with a single beam-charge are sensitive only to the combination of the results

presented here, i.e., the single-beam-charge results are given as

Asin φ
LU (eℓ) ≈ el A

sinφ
LU,I + Asin φ

LU,DVCS, (6.1)

if the contributions cI
n from the interference term in the denominator of eq. (2.1) can be

neglected. Previous HERMES measurements [24, 25] found these contributions to be small

compared to the remainder of the denominator, and a more precise constraint is presented

below. Using the present data, the separate analysis of the positron {electron} data yields

values for Asinφ
LU (eℓ) of −0.177 ± 0.022(stat.) {0.255 ± 0.051(stat.)}, in agreement with

−0.181±0.046(stat.) {0.267±0.065(stat.)} calculated from eq. (6.1) neglecting correlations

from the commonality of the data sets.
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The sin 2φ amplitude of ALU,I is shown in the third row of figure 2. It has an over-

all value consistent with zero (−0.035 ± 0.028 ± 0.002) and thus, as expected, is much

smaller than the corresponding sin φ amplitude. Those asymmetry amplitudes included in

eqs. (4.2)–(4.4) as tests for instrumental effects are found to be compatible with zero.

The data in figure 2 are compared with theoretical calculations to leading order in QED

and QCD. In the GPD based model (VGG) described in refs. [30, 38], the dependences on

ξ and t are factorized while those on x and t may be entangled when a Regge-motivated

ansatz is invoked. The model is formulated as a double distribution [1, 3] complemented by

a D-term [39], where the kernel of the double distribution contains a profile function [40, 41]

that determines the dependence on ξ, controlled by a parameter b [42]. In the limit b → ∞
the GPD is independent of ξ. Note that bval (bsea) is a free parameter for the valence

(sea) quarks and thus can be used as a fit parameter in the extraction of GPDs from

hard-electroproduction data.

In each kinematic bin, a range of theoretical predictions was calculated [43] by varying

the model parameters of only the GPD H, since these data are sensitive mostly to this

GPD as explained above. Variants of the model are distinguished by differences in the t

dependence of the GPD H, for which either a simple ansatz is used where the t dependence

factorizes from the dependence on the other kinematic variables, or the Regge-motivated

ansatz is employed. Since the differences are found to be small for all amplitudes shown

in figure 2, only the results based on the latter ansatz (VGG Regge) are displayed. The

broad width of the bands is due to the fact that the parameters bval and bsea were varied

between unity and infinity, with the variation in bsea having the strongest effect. Note that

including or neglecting the D-term in the GPD model does not change the result since

it contributes only to the real part of the DVCS amplitude. The other model presented

here (Dual-GT) is based on the corrected [34] minimal implementation [33] of the dual

parameterization GPD model [44], in which the dependence on ξ is factorized from the

dependences on x and t. The t dependence in this model is also Regge-motivated. All

models overestimate the magnitude of Asin φ
LU,I by approximately a factor of two. They are

consistent with the observed shapes of the kinematic dependences on xB and Q2 (but not t).

The part of the VGG band closest to the data, i.e., with the smallest absolute amplitude,

corresponds to bsea = ∞. Note that these models are for the elastic part of the cross

section only while this measurement includes associated production in which the nucleon

in the final state is excited to a resonant state. In the following it is considered whether

the contribution from associated production can account for the observed discrepancies

between model predictions and data.

The bottom row of figure 2 shows the estimated fractional contribution from associated

BH production in each kinematic bin, calculated using MC simulations described in ref. [25].

The overall value is about 12%. In an attempt to estimate Asin φ
LU,I in elastic and associated

production separately, the strong dependence of the fractional contributions of elastic and

associated production on the missing mass value in the exclusive region −(1.5 GeV)2 <

M2
X < (1.7 GeV)2 can be utilized. The exclusive region can be split in several bins, each bin

with its background-corrected amplitude Acorr = felasAelas + fassoAasso. The fraction felas

(fasso) of elastic (associated) production per bin is taken from the MC simulation, in which
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the DVCS process is not implemented because the BH cross section is expected to dominate

that of DVCS not only for elastic but also for associated production [45]. Assuming that

the values of Asinφ
LU,I for elastic and associated production do not depend on M2

X , the two

unknown amplitudes Aelas and Aasso are extracted from the five equations corresponding to

the five M2
X -bins. The resulting overall sin φ amplitude from elastic production is found to

be −0.209±0.066 and thus hardly differs from that reported in table 1, while the one from

associated production can only be constrained to be between −0.68 and 0.09 within one

standard deviation in the statistical uncertainty. According to theoretical calculations [45]

a correction factor of 1.1 has to be applied to the measured beam-helicity asymmetry in

HERMES kinematics due to the ∆ resonance region (W < 1.35 GeV). For the associated

DVCS amplitude these calculations are based on a model for transition GPDs, which

are related to those on the nucleon within this model. Thus neither the extracted sin φ

amplitudes Aelas and Aasso nor model calculations support extreme scenarios in which the

sin φ amplitude from associated production has an overall value of unity, which would be

required to obtain a sinφ amplitude for elastic production as large as the value −0.39 or

more predicted by the models shown. Thus associated production cannot account for the

overestimate of the asymmetry amplitudes by the models.

A promising alternative to comparing the data with existing models is to use a flexible

GPD parameterization and perform a global fit to all DVCS data. First steps in this

direction have been made [46–50], one of which found that a preliminary HERMES result

on the sin φ amplitude of the beam helicity asymmetry for a single charge (positron) [35]

can be described by a fit to other DVCS data [48]. In order to provide additional input for

future fits, in particular for the entangled ξ and −t dependences of GPDs, the amplitudes

already presented in figure 2 are shown in figure 3 as a function of −t for three different

ranges of xB. The possibly negative sin 2φ amplitude for the largest xB bins in figure 2 is

found to be independent of t in the lower right panel of figure 3.

The cos(nφ) amplitudes (n = 0–3) of the beam charge asymmetry are shown in figure 4.

The cos(0φ) and the cos φ amplitudes, i.e., the amplitudes related to twist-2 GPDs, are

zero at small values of −t and become non-zero with increasing values of −t, with opposite

sign and smaller magnitude for cos(0φ) as expected from eq. (1.8). It is interesting to note

that Acos φ
C and Asinφ

LU,I show a fundamentally different dependence on −t, despite relating

to the real and imaginary parts of the twist-2 helicity-conserving DVCS amplitude via the

same factor k ∝ √−t/Q in eq. (1.6) and eq. (1.5), respectively. The cos φ amplitude does

not exhibit any kinematic dependence on xB or Q2. It is in agreement with the earlier

HERMES measurements based on subsamples of the data used in this analysis [24, 25].

The cos(2φ) amplitude, which is related to twist-3 GPDs, is suppressed as expected and

found to be compatible with zero. Also, the cos(3φ) amplitude, which is related to gluon

helicity-flip GPDs, is found to be consistent with zero. No striking additional features are

observed in figure 5 where the cos(nφ) amplitudes are shown as a function of −t for three

distinct xB ranges.

The theoretical calculations shown in figure 4 are based on either the Dual-GT or the

VGG model. For the VGG model the parameter settings bval = ∞ and bsea = 1 are used

and the contribution from the D-term is set to zero, as only this set of parameters yields a
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Figure 3. The first (second) row shows the sinφ amplitude of the beam-helicity asymmetry

ALU,I (ALU,DVCS) sensitive to the interference term (squared DVCS term), extracted from the

1996–2005 hydrogen data as a function of −t for three xB ranges. Correspondingly, the third row

shows the sin(2φ) amplitude of ALU,I. The error bars (bands) represent the statistical (systematic)

uncertainties. Not included is a 2.8% scale uncertainty due to the beam polarization measurement.

good description of the BCA data [24, 25]. Note that the same set, in particular the setting

bsea = 1, leads to amplitudes with the largest magnitude among those represented in the

bands in the top row of figure 2, i.e., it clearly does not describe the data related to the

imaginary part of the DVCS amplitude. It appears that additional degrees of freedom in

the calculation of the BCA, such as the value assigned to the D-term, allow the VGG model

to be tuned to resemble the BCA data. Similarly, the Dual-GT model does not describe

the data in figure 2 but is in reasonable agreement with the BCA data shown in figure 4.

(The sudden increase of the cos φ amplitude predicted by this model in the highest xB and

Q2 bins might be due to the fact that this model is designed for small and medium values

of xB up to 0.2.) While the increase {decrease} of the cos φ {cos(0φ)} amplitude with −t is

well reproduced within these models, the contribution of associated processes not included

in these models is expected to also increase with −t as shown in the bottom row.

7 Summary

Previously unmeasured charge-difference and charge-averaged beam-helicity asymmetries

in hard electroproduction of real photons from an unpolarized proton target are extracted

from data taken with electron and positron beams. The sin φ amplitudes of these beam-

helicity asymmetries are sensitive to the interference term (twist-2) and to the squared
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Figure 4. The cos(nφ) amplitude (n = 0–3) of the beam-charge asymmetry AC, extracted from

the 1996–2005 hydrogen data in the entire experimental acceptance, and as a function of −t, xB,

and Q2. The error bars (bands) represent the statistical (systematic) uncertainties. The theoretical

calculations are based on the models that are unable to describe the data in figure 2. For the VGG

model the parameter settings bval = ∞ and bsea = 1 are used and the contribution from the D-term

is set to zero. The bottom row shows the fractional contribution of associated BH production as

obtained from a MC simulation.

DVCS term (twist-3), respectively, whereas earlier measured beam-helicity asymmetries

with a single beam-charge are sensitive to only their linear combination. In addition, the

most precise determination of the beam-charge asymmetry is presented, which provides

access to the real part of the DVCS amplitude. The GPD models presented are not able to

describe the sin φ amplitude sensitive to the interference term, while they can be adjusted

to resemble the results on the beam-charge asymmetry, presumably because the model

calculations have additional degrees of freedom in the latter case. The amplitudes related

to higher-twist or gluon helicity-flip GPDs are found to be compatible with zero. The

results presented on these charge-decomposed beam-helicity asymmetries and on the high-

precision beam-charge asymmetry have the potential to considerably constrain the GPD

H when used in comparison with future GPD models or as input to global fits.
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Figure 5. The cos(nφ) amplitude (n = 0–3) of the beam-charge asymmetry AC, extracted from

the 1996–2005 hydrogen data as a function of −t for three xB ranges. The error bars (bands)

represent the statistical (systematic) uncertainties.
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A Tables of results

kinematic bin 〈−t〉 〈xB〉 〈Q2〉 A
sin φ
LU,I A

sin φ
LU,DVCS A

sin(2φ)
LU,I

[GeV2] [GeV2] ±δ(stat.) ± δ(syst.) ±δ(stat.) ± δ(syst.) ±δ(stat.) ± δ(syst.)

overall −0.12 0.10 2.46 −0.224 ± 0.028 ± 0.020 0.043 ± 0.028 ± 0.004 −0.035 ± 0.028 ± 0.002

−
t
[G

e
V

2
]

0.00 − 0.03 −0.02 0.07 1.71 −0.225 ± 0.062 ± 0.010 0.095 ± 0.062 ± 0.007 0.057 ± 0.061 ± 0.006

0.03 − 0.06 −0.04 0.09 2.22 −0.231 ± 0.063 ± 0.016 0.091 ± 0.062 ± 0.010 −0.039 ± 0.061 ± 0.012

0.06 − 0.10 −0.08 0.10 2.44 −0.193 ± 0.069 ± 0.009 −0.051 ± 0.069 ± 0.011 −0.063 ± 0.068 ± 0.006

0.10 − 0.20 −0.14 0.11 2.72 −0.249 ± 0.059 ± 0.013 0.020 ± 0.058 ± 0.008 −0.041 ± 0.058 ± 0.012

0.20 − 0.35 −0.26 0.12 3.13 −0.256 ± 0.080 ± 0.013 0.126 ± 0.079 ± 0.015 −0.065 ± 0.080 ± 0.013

0.35 − 0.70 −0.46 0.12 3.63 −0.158 ± 0.115 ± 0.013 −0.101 ± 0.114 ± 0.010 −0.201 ± 0.116 ± 0.025

x
B

0.03 − 0.06 −0.10 0.05 1.34 −0.248 ± 0.060 ± 0.067 0.087 ± 0.059 ± 0.011 −0.028 ± 0.059 ± 0.008

0.06 − 0.08 −0.09 0.07 1.78 −0.191 ± 0.059 ± 0.034 0.023 ± 0.058 ± 0.007 0.011 ± 0.057 ± 0.003

0.08 − 0.10 −0.11 0.09 2.30 −0.215 ± 0.069 ± 0.018 0.026 ± 0.069 ± 0.014 0.046 ± 0.068 ± 0.018

0.10 − 0.13 −0.12 0.11 2.92 −0.248 ± 0.071 ± 0.032 0.033 ± 0.071 ± 0.016 −0.039 ± 0.072 ± 0.010

0.13 − 0.20 −0.16 0.16 4.04 −0.244 ± 0.077 ± 0.023 0.066 ± 0.077 ± 0.016 −0.229 ± 0.076 ± 0.012

0.20 − 0.35 −0.23 0.24 6.11 −0.040 ± 0.139 ± 0.005 −0.196 ± 0.137 ± 0.048 −0.138 ± 0.132 ± 0.022

Q
2
[G

e
V

2
]

1.0 − 1.4 −0.08 0.05 1.20 −0.247 ± 0.059 ± 0.055 0.078 ± 0.059 ± 0.010 −0.034 ± 0.058 ± 0.005

1.4 − 1.8 −0.10 0.07 1.59 −0.151 ± 0.067 ± 0.042 0.034 ± 0.067 ± 0.016 0.042 ± 0.066 ± 0.004

1.8 − 2.4 −0.11 0.08 2.08 −0.230 ± 0.064 ± 0.031 0.052 ± 0.064 ± 0.013 −0.047 ± 0.062 ± 0.009

2.4 − 3.2 −0.13 0.10 2.77 −0.425 ± 0.068 ± 0.041 0.212 ± 0.068 ± 0.015 0.034 ± 0.070 ± 0.011

3.2 − 4.5 −0.15 0.13 3.76 −0.103 ± 0.076 ± 0.040 −0.097 ± 0.075 ± 0.012 −0.116 ± 0.076 ± 0.003

4.5 − 10. −0.22 0.20 5.75 −0.129 ± 0.094 ± 0.008 −0.125 ± 0.093 ± 0.013 −0.161 ± 0.092 ± 0.009

Table 2. Bin sizes, average kinematic values and results of the asymmetry amplitudes presented

in figure 2.

kinematic bin 〈−t〉 〈xB〉 〈Q2〉 A
sin φ
LU,I

A
sin φ
LU,DVCS

A
sin(2φ)
LU,I

[GeV2] [GeV2] ±δ(stat.) ± δ(syst.) ±δ(stat.) ± δ(syst.) ±δ(stat.) ± δ(syst.)

−
t
[G

e
V

2
]

0
.0

3
<

x
B

<
0
.0

8 0.00 − 0.03 −0.02 0.06 1.47 −0.295 ± 0.073 ± 0.016 0.201 ± 0.072 ± 0.004 0.015 ± 0.071 ± 0.008

0.03 − 0.06 −0.04 0.06 1.56 −0.158 ± 0.089 ± 0.010 0.019 ± 0.089 ± 0.017 0.056 ± 0.085 ± 0.010

0.06 − 0.10 −0.08 0.06 1.55 −0.136 ± 0.108 ± 0.022 −0.096 ± 0.107 ± 0.011 −0.081 ± 0.106 ± 0.006

0.10 − 0.20 −0.14 0.06 1.57 −0.206 ± 0.095 ± 0.027 −0.074 ± 0.095 ± 0.010 0.046 ± 0.093 ± 0.014

0.20 − 0.35 −0.26 0.06 1.69 −0.362 ± 0.137 ± 0.019 0.280 ± 0.137 ± 0.018 −0.101 ± 0.143 ± 0.015

0.35 − 0.70 −0.46 0.05 1.78 −0.050 ± 0.234 ± 0.031 −0.161 ± 0.234 ± 0.063 −0.218 ± 0.239 ± 0.052

−
t
[G

e
V

2
]

0
.0

8
<

x
B

<
0
.1

2 0.00 − 0.03 −0.02 0.09 2.32 −0.022 ± 0.129 ± 0.010 −0.177 ± 0.128 ± 0.016 0.095 ± 0.126 ± 0.007

0.03 − 0.06 −0.04 0.10 2.50 −0.269 ± 0.110 ± 0.011 0.086 ± 0.109 ± 0.013 −0.180 ± 0.105 ± 0.016

0.06 − 0.10 −0.08 0.10 2.43 −0.254 ± 0.125 ± 0.018 −0.088 ± 0.123 ± 0.021 0.005 ± 0.124 ± 0.007

0.10 − 0.20 −0.14 0.10 2.51 −0.258 ± 0.107 ± 0.015 0.119 ± 0.106 ± 0.018 0.001 ± 0.106 ± 0.028

0.20 − 0.35 −0.26 0.10 2.74 −0.106 ± 0.156 ± 0.025 −0.054 ± 0.154 ± 0.019 −0.063 ± 0.155 ± 0.025

0.35 − 0.70 −0.47 0.10 3.25 −0.062 ± 0.242 ± 0.026 −0.060 ± 0.242 ± 0.026 0.140 ± 0.280 ± 0.045

−
t
[G

e
V

2
]

0
.1

2
<

x
B

<
0
.3

5 0.00 − 0.03 −0.03 0.13 2.91 −0.037 ± 0.368 ± 0.046 −0.271 ± 0.370 ± 0.104 0.514 ± 0.363 ± 0.083

0.03 − 0.06 −0.05 0.15 3.62 −0.255 ± 0.145 ± 0.042 0.238 ± 0.145 ± 0.027 −0.073 ± 0.150 ± 0.048

0.06 − 0.10 −0.08 0.16 3.93 −0.223 ± 0.137 ± 0.035 0.059 ± 0.137 ± 0.006 −0.099 ± 0.135 ± 0.008

0.10 − 0.20 −0.14 0.17 4.30 −0.241 ± 0.109 ± 0.018 0.023 ± 0.108 ± 0.012 −0.208 ± 0.108 ± 0.018

0.20 − 0.35 −0.26 0.18 4.76 −0.242 ± 0.135 ± 0.039 0.158 ± 0.134 ± 0.018 −0.068 ± 0.130 ± 0.033

0.35 − 0.70 −0.46 0.19 5.52 −0.284 ± 0.188 ± 0.034 −0.187 ± 0.185 ± 0.028 −0.284 ± 0.175 ± 0.035

Table 3. Bin sizes, average kinematic values and results of the asymmetry amplitudes presented

in figure 3.
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kinematic bin 〈−t〉 〈xB〉 〈Q2〉 A

cos(0φ)
C A

cos φ
C A

cos(2φ)
C A

cos(3φ)
C

[GeV2] [GeV2] ±δ(stat.) ± δ(syst.) ±δ(stat.) ± δ(syst.) ±δ(stat.) ± δ(syst.) ±δ(stat.) ± δ(syst.)

overall −0.12 0.10 2.46 −0.020 ± 0.006 ± 0.008 0.055 ± 0.009 ± 0.004 −0.002 ± 0.009 ± 0.013 −0.004 ± 0.009 ± 0.006

−
t

[G
e
V

2
]

0.00 − 0.03 −0.02 0.07 1.71 −0.027 ± 0.014 ± 0.009 0.018 ± 0.020 ± 0.004 0.008 ± 0.020 ± 0.008 0.010 ± 0.020 ± 0.001

0.03 − 0.06 −0.04 0.09 2.22 0.001 ± 0.014 ± 0.003 −0.007 ± 0.020 ± 0.004 −0.004 ± 0.020 ± 0.013 0.004 ± 0.020 ± 0.005

0.06 − 0.10 −0.08 0.10 2.44 0.003 ± 0.015 ± 0.011 0.022 ± 0.022 ± 0.011 0.022 ± 0.022 ± 0.013 −0.015 ± 0.022 ± 0.009

0.10 − 0.20 −0.14 0.11 2.72 −0.018 ± 0.013 ± 0.013 0.067 ± 0.018 ± 0.012 −0.038 ± 0.018 ± 0.021 −0.019 ± 0.018 ± 0.004

0.20 − 0.35 −0.26 0.12 3.13 −0.034 ± 0.018 ± 0.006 0.160 ± 0.025 ± 0.019 0.018 ± 0.025 ± 0.042 −0.005 ± 0.025 ± 0.015

0.35 − 0.70 −0.46 0.12 3.63 −0.056 ± 0.029 ± 0.009 0.235 ± 0.043 ± 0.051 0.041 ± 0.040 ± 0.025 0.037 ± 0.038 ± 0.020

x
B

0.03 − 0.06 −0.10 0.05 1.34 −0.043 ± 0.014 ± 0.014 0.035 ± 0.021 ± 0.011 0.004 ± 0.019 ± 0.007 0.040 ± 0.018 ± 0.003

0.06 − 0.08 −0.09 0.07 1.78 −0.014 ± 0.013 ± 0.007 0.043 ± 0.019 ± 0.012 −0.046 ± 0.019 ± 0.012 −0.026 ± 0.019 ± 0.001

0.08 − 0.10 −0.11 0.09 2.30 −0.048 ± 0.016 ± 0.014 0.064 ± 0.022 ± 0.024 0.033 ± 0.022 ± 0.019 −0.005 ± 0.022 ± 0.011

0.10 − 0.13 −0.12 0.11 2.92 0.010 ± 0.017 ± 0.009 0.018 ± 0.024 ± 0.002 0.024 ± 0.023 ± 0.004 −0.035 ± 0.023 ± 0.005

0.13 − 0.20 −0.16 0.16 4.04 −0.012 ± 0.018 ± 0.012 0.088 ± 0.025 ± 0.032 0.007 ± 0.025 ± 0.001 −0.006 ± 0.024 ± 0.009

0.20 − 0.35 −0.23 0.24 6.11 0.040 ± 0.032 ± 0.029 0.041 ± 0.045 ± 0.014 0.014 ± 0.045 ± 0.026 −0.076 ± 0.044 ± 0.014

Q
2

[G
e
V

2
] 1.0 − 1.4 −0.08 0.05 1.20 −0.041 ± 0.013 ± 0.021 0.048 ± 0.018 ± 0.031 0.018 ± 0.018 ± 0.010 0.046 ± 0.018 ± 0.006

1.4 − 1.8 −0.10 0.07 1.59 −0.033 ± 0.015 ± 0.020 0.063 ± 0.021 ± 0.015 −0.035 ± 0.021 ± 0.016 −0.027 ± 0.021 ± 0.004

1.8 − 2.4 −0.11 0.08 2.08 −0.012 ± 0.015 ± 0.014 0.049 ± 0.020 ± 0.013 −0.023 ± 0.021 ± 0.005 −0.023 ± 0.020 ± 0.011

2.4 − 3.2 −0.13 0.10 2.77 −0.025 ± 0.016 ± 0.006 0.050 ± 0.023 ± 0.008 0.021 ± 0.022 ± 0.019 −0.001 ± 0.023 ± 0.014

3.2 − 4.5 −0.15 0.13 3.76 0.021 ± 0.018 ± 0.009 0.050 ± 0.025 ± 0.002 −0.009 ± 0.025 ± 0.015 −0.051 ± 0.025 ± 0.001

4.5 − 10. −0.22 0.20 5.75 −0.001 ± 0.021 ± 0.014 0.053 ± 0.030 ± 0.054 0.029 ± 0.030 ± 0.006 −0.002 ± 0.030 ± 0.011

Table 4. Bin sizes, average kinematic values and results of the asymmetry amplitudes presented in figure 4.

kinematic bin 〈−t〉 〈xB〉 〈Q2〉 A
cos(0φ)
C A

cos φ
C A

cos(2φ)
C A

cos(3φ)
C

[GeV2] [GeV2] ±δ(stat.) ± δ(syst.) ±δ(stat.) ± δ(syst.) ±δ(stat.) ± δ(syst.) ±δ(stat.) ± δ(syst.)

−
t[

G
e
V

2
]

0
.0

3
<

x
B

<
0
.0

8 0.00 − 0.03 −0.02 0.06 1.47 −0.026 ± 0.017 ± 0.016 −0.005 ± 0.023 ± 0.006 −0.017 ± 0.023 ± 0.012 0.002 ± 0.023 ± 0.008

0.03 − 0.06 −0.04 0.06 1.56 0.011 ± 0.021 ± 0.012 0.032 ± 0.028 ± 0.006 −0.036 ± 0.029 ± 0.008 −0.004 ± 0.029 ± 0.002

0.06 − 0.10 −0.08 0.06 1.55 −0.008 ± 0.024 ± 0.028 0.007 ± 0.034 ± 0.007 0.024 ± 0.033 ± 0.020 0.025 ± 0.033 ± 0.025

0.10 − 0.20 −0.14 0.06 1.57 −0.041 ± 0.022 ± 0.034 0.050 ± 0.032 ± 0.006 −0.051 ± 0.031 ± 0.023 0.002 ± 0.030 ± 0.006

0.20 − 0.35 −0.26 0.06 1.69 0.006 ± 0.049 ± 0.022 0.241 ± 0.084 ± 0.033 0.094 ± 0.069 ± 0.051 0.095 ± 0.052 ± 0.025

0.35 − 0.70 −0.46 0.05 1.78 0.196 ± 0.196 ± 0.068 0.710 ± 0.328 ± 0.134 0.302 ± 0.242 ± 0.060 0.146 ± 0.126 ± 0.035

−
t[

G
e
V

2
]

0
.0

8
<

x
B

<
0
.1

2 0.00 − 0.03 −0.02 0.09 2.32 −0.021 ± 0.029 ± 0.021 0.065 ± 0.042 ± 0.039 0.066 ± 0.041 ± 0.010 0.028 ± 0.040 ± 0.018

0.03 − 0.06 −0.04 0.10 2.50 −0.001 ± 0.025 ± 0.010 −0.041 ± 0.037 ± 0.004 0.062 ± 0.036 ± 0.020 0.032 ± 0.035 ± 0.014

0.06 − 0.10 −0.08 0.10 2.43 0.033 ± 0.028 ± 0.021 0.050 ± 0.039 ± 0.006 0.043 ± 0.039 ± 0.014 −0.003 ± 0.040 ± 0.004

0.10 − 0.20 −0.14 0.10 2.51 −0.022 ± 0.025 ± 0.026 0.073 ± 0.035 ± 0.016 −0.036 ± 0.035 ± 0.016 −0.051 ± 0.034 ± 0.005

0.20 − 0.35 −0.26 0.10 2.74 −0.045 ± 0.035 ± 0.037 0.170 ± 0.049 ± 0.009 0.009 ± 0.048 ± 0.023 −0.079 ± 0.049 ± 0.021

0.35 − 0.70 −0.47 0.10 3.25 −0.118 ± 0.081 ± 0.020 0.137 ± 0.137 ± 0.051 0.041 ± 0.117 ± 0.024 −0.047 ± 0.101 ± 0.021

−
t[

G
e
V

2
]

0
.1

2
<

x
B

<
0
.3

5 0.00 − 0.03 −0.03 0.13 2.91 −0.181 ± 0.081 ± 0.028 0.297 ± 0.126 ± 0.060 0.161 ± 0.110 ± 0.046 −0.010 ± 0.118 ± 0.016

0.03 − 0.06 −0.05 0.15 3.62 0.029 ± 0.036 ± 0.016 −0.104 ± 0.054 ± 0.016 0.014 ± 0.051 ± 0.011 −0.075 ± 0.049 ± 0.005

0.06 − 0.10 −0.08 0.16 3.93 −0.006 ± 0.032 ± 0.004 −0.000 ± 0.045 ± 0.056 0.014 ± 0.046 ± 0.006 −0.101 ± 0.044 ± 0.008

0.10 − 0.20 −0.14 0.17 4.30 0.021 ± 0.025 ± 0.020 0.041 ± 0.036 ± 0.017 −0.007 ± 0.035 ± 0.015 −0.036 ± 0.035 ± 0.006

0.20 − 0.35 −0.26 0.18 4.76 −0.015 ± 0.031 ± 0.004 0.136 ± 0.043 ± 0.027 0.038 ± 0.042 ± 0.013 −0.022 ± 0.042 ± 0.008

0.35 − 0.70 −0.46 0.19 5.52 −0.026 ± 0.042 ± 0.031 0.199 ± 0.059 ± 0.017 0.030 ± 0.057 ± 0.034 0.095 ± 0.057 ± 0.063

Table 5. Bin sizes, average kinematic values and results of the asymmetry amplitudes presented in figure 5.
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